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Previous measurements in the moderate to small Reynolds number range of isotropic 
turbulence have all shown the skewness factor S = - (au/a~)~/[ (au/&)~] t  of the 
streamwise velocity derivative to increase with decreasing Reynolds number. This 
‘paradoxical’ trend was found for 150 2 RA 2 4. New data covering the range 
4 2 RA 2 1 show a maximum S for RA between 4 and 3 and a rapid decrease for RA < 2. 

1. Introduction 
One of the central characteristics of fully developed turbulent flows is the negative 

value of the skewness of the streamwise velocity derivative, customarily characterized 
by its negative 

(1) 

An essential consequence of the nonlinearity of the Navier-Stokes equations, 
S represents, among other effects, the average rate of production of mean-square 
vorticity by vortex stretching (Taylor 1938), a process which is absent from most 
traditional laminar flows. Starting with Batchelor & Townsend (1948), a number of 
people have reported measurements of S in various turbulent flows corresponding to 
turbulent Reynolds numbers R, = (u2)4h/v between approximately 5 and 10000. 
Here h is the ‘Taylor microscale’, uz = +ukuk is the average of the mean-square 
turbulent velocity components and v is the kinematic viscosity. 

Some typical values of S for R, > 4 measured by previous investigators are pre- 
sented in figure 1.  Starting at  the large RA end, we see that S is almost 1.0 for the largest 
RA attained, decreases to approximately 0.35 for RA x 200, then monotonically in- 
creases again to 0.55 for RA M 5. Persistence of this upward trend indefinitely with 
decreasing RA would seem paradoxical since for small enough RA the nonlinear terms in 
the NavierStokes equations become negligible, so one would intuitively expect S to 
vanish as well. The present study has consisted of the measurement of S in nearly 
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FIGURE 1. Measurements of the velocity-derivative skewness in various turbulent flows plotted 
us. the turbulent Reynolds number (see table 1 for symbols). 

Type of flow Author (8 )  Symbol 

Nearly isotropic 
grid turbulence 

Homogeneous shear flow 
Duct flow 

Mixing layers 

Axisymmetric jet 

Boundary layer 
Abmosphere 

Batchelor & Townsend (1 949) 
Stewart & Townsend (1951) 
Mills et al. (1958) 
Frenkiel & Klebanoff (1971) 
Kuo & Corrsin (1971) 
Betchov & Lorenzen (1974) 
Bennett & Corrsin ( 1  978) 
Present data 
Tavoularis (1978) 
Comte-Bellot (1965) 
Elena, Chauve & Dumas (1977) 
Wyngaard & Tennekes (1 970) 
Champagne, Pao & Wygnanski (1976) 
Friehe, Van Atta & Gibson (1972) 
New measurements 
Ueda & Hinze (1975) 
Gibson, Stegen & Williams (1970) 
Wyngaard & Tennekes (1970) 

TABLE 1 

0 

isotropic grid turbulence with R, as low as 1.  Some theoretical predictions of the 
behaviour of S at  small R, are also presented. 

2. Some theoretical predictions 
The particular velocity-derivative skewness defined in (1) is most simply related to 

the zero-separation third derivative of a particular triple correlation function (see, for 
example, Batchelor 1953, p. 119): in isotropic turbulence, 

S(t) = - k”(O,Z) / [ fyO,  t )]k (2) 
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Here f ( r )  is the two-point velocity correlation function for components parallel to the 
line r joining the points and k ( r )  is the two-point triple velocity correlation function for 
components parallel to the line joining the points. The primes denote differentiation 
with respect to r. The equivalent expression in terms of the three-dimensional spectral 
function E ( k ,  t )  and energy transfer function T(k,  t )  is 

Iom k 2 T ( t ,  t )  dk/ [ jr k2E(k, t )  dk]'. 
3 x 304 

14 
8(t) = - (3) 

The von KBrmBn-Howarth equation for the evolution of the double correlation in 
terms of the triple one can be used to express T in ( 3 )  in terms of E ,  giving S in terms of 
E alone: 

Io* k4E(k, t ) d k  

[ I 0 k2E(k, t ) d k ]  

kzE(k, t )  dk 
S(t)  = Q x 3 0 b  + i$ x 304 (4 1 [Iom k2E(k,t)dk]' .  

In  the 'final period' of decay, the spectral transfer function becomes negligible and 
the spectral energy balance equation 

a[E(k,  t ) ] / a t  + 21&2E(k, t )  M 0 

E ( k ,  t )  = C ( k )  exp ( - 2vk2t). 
has the general solution 

The form of C ( k )  can be found by letting k - t  0 and making a plausible assumption. 
Batchelor & Townsend (1948;  see also von KBrmBn & Howarth 1938) assumed in 
effect that all velocity cumulants have convergent integral moments to derive 

and 

- 
u2, t-8 as t - t c o  

E ( k ,  t )  N k4exp ( -  2vk2t). 

On the other hand, Saffman (1967) assumed that all vorticity cumulants have con- 
vergent integral moments and concluded that 

and 

- 
~ 2 ~ t b  as t + m  

E ( k ,  t )  N kzexp ( -  2vk2t). 

Experimental evidence seems to confirm ( 7 )  for grid-generated, nearly isotropic 
turbulence (Batchelor & Townsend 1948; Bennett & Corrsin 1978). 

Assumptions (i.e. theories) are necessary in order to compute the asymptotic form 
of the spectral transfer function T ( k ,  t )  in the final period of decay. Lin & Reid'( 1963) 
used Heisenberg's spectral theory and, with (3) and (8), concluded that 

S+constant $. 0 as t - +  00 (Rh-+O). ( 1 1 )  

It is of course doubtful that Heisenberg's assumptions are valid in the final period of 
decay. A possibly more realistic expression for T ( k ,  t )  as t -+ co was derived by Deissler 
( 1  957) by discarding quadruple correlations in the balance equations for the triple 
correlations. The leading term of his expression was 

T ( k ,  t )  k12t-8exp ( - #vk2t). (12 )  
FLM aa 3 
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Substituting (12) and (8) into (3), we find that 

X. Tavoubris, J .  C. Bennett and S. Corrsin 

h"t-V-+O as t+m. (13) 

S N t - * + O  as t+co. (14) 

If (10) were used instead of (8), the result would be 

Since the asymptotic time dependence of the turbulence Reynolds number 

R, = U 2 / V  

(u' = r.m.s. velocity, h = Taylor microscale, v = kinematic viscosity) is given by the 
von K&rm&n-Howarth/Batchelor-Townsend theory as 

R, N t-8 as t+ -m 

& N t - )  as t-tco, 
and by the Saffman theory as 

expressions (1  3) and (14) can be formulated in terms of R, as 

and 
8-R:  as R,+O (17) 

S N R ~  as RA-+O. (18) 

The above analyses suggest that S decreases rapidly with R, at very small values of 

It should be pointed out parenthetically in this section that both the heat conduction 
R,. 

equation 

and the Burgers equation 

a6/at = 9 a26/8x2 ($9 = constant) (19) 

( K  = constant) 
ae a0 a 2 e  

ax ax2 
- at+e- = K -  

give zero skewness for a6/8x asymptotically for t+m, independent of the initial 
skewness, for a general periodic initial distribution e(x, 0). 

3. Instrumentation and accuracies 
The final measurements were conducted in the nearly isotropic turbulence behind a 

woven-wire square-mesh grid with mesh size M = 1.27 mm and solidity 0.35. Four 
other grids of approximately the same solidity but with mesh sizes equal to 25.4 mm, 
6.4 mm, 4.2 mm and 3.2 mm, generating turbulence with R, between 40 and 5 ,  
were also used in the earlier phases of this investigation (see Bennett & Corrsin 
1978). Attempts to reduce R, further by decreasing the mean speed 0 through the 
M = 3.2 mm grid failed; the wind-tunnel flow became erratic for speeds less than 
about 4 m/s. Therefore a finer grid was made, and reliable measurements of S in 
turbulence with R, as low as 1 were possible with the new grid. 

The streamwise velocity fluctuation was measured wit,h a hot wire of diameter 
5pm and length 1.2 mm, operated by a DISA 55D01 constant-temperature anemo- 
meter. The anemometer output 'was filtered with a Krohn-Hite model 330-M ultra- 
low-frequency band-pass filter and then digitized and processed in real time with the 
help of a PDP 11/40 digital mini-computer. The temporal derivative of the velocity 
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FIQURE 2. Measured values of the velocity-derivative skewness S and the turbulent Reynolds 
number R, for different grid Reynolds numbers ( M  = 1.27 mm). 

was first computed from the difference between successive values of the digital time 
history and then transformed into the streamwise spatial derivative through use of 
Taylor’s approximation. The sampling frequency was approximately four times the 
frequency associated with mean convection of the Kolmogorov microscale past the 
probe, viz. 4(U/Z?rq), while the hot-wire length was nearly equal to or slightly smaller 
than the Kolmogorov microscale. 

The instantaneous apparent velocity uap was the sum of the turbulent velocity u, 
the free-stream velocity fluctuation uf (due possibly to fluctuations in the speed of the 
electric motor and flow irregularities in the settling chamber of the wind tunnel) and 
the electronic noise n. Assuming that these three terms were pairwise statistically 
independent, one finds that 

(21) 
and 

(22) 

- - _ _  
u2 = uip - u; - n2 

s = (ti:, - u; - n S ) / ( u : ,  - u; - nyt, 
- - - - - -  

where the dots indicate temporal derivatives. 
The statistical properties of the sum uf +n were measured independently of u by 

replacing the grid with an empty frame; in this way proper corrections were applied 
for the recovery of 2 and S from the raw signal statistics. In  addition, band-pass 
filtering was used to maximize the ratio u~/u&. The high frequency setting$, of the 
filter was approximately twice the Kolmogorov frequency Q/27q, while the low fre- 
quency setting fL was selected by trial and error as the value which reduced7 by the 
maximum possible amount without appreciably affecting 3. Fortunately, most of the 
‘energy’ of uf was concentrated at much lower frequencies than the inverse of the 
integral time scale of u, so that in most cases the ratio uz/ui, was found to be nearly 
equal to 1 fortL in the range 1-5 Hz. 

-- 

-- 
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4. Results 
Figure 2 shows the variation of the values of S and R, measured at  a fixed position 

x / M  = 800 behind the M = 1.27 mm grid for different values of the grid Reynolds 
number RM = U M / v .  Neither S nor R, shows a monotonic trend with decreasing 
RM, but they both have a maximum at RM x 575 and then rapidly decrease to the 
values S x 0.15 and R, x 1.5 at RM x 475. The similarity of the behaviour of S and 
R, over the entire range of RM is remarkable. It is worth mentioning that the random 
character of the hot-wire signal could still be observed on the oscilloscope at  Rnf z 450, 
but as Rnf approached 400 it became clear that the flow ceased to be turbulent. 

The downstream variation of 2, R, and S when RM z 475 is shown in figure 3. 
An equation of the form - 

u2a  ( z / M  + 500)-%, (23) 

consistent with the theory of the final period of decay of Batchelor & Townsend (1948) 
and the data of Bennett & Corrsin (1978), was successfully fitted to the experimental 
values of 2, as seen in figure 3 (a). The ratio U ~ / U &  also shown in figure 3 (a) ,  varied 
between 1 and 0.7. Figure 3 ( b )  is a plot of the values of R, computed with the aid of 
isotropic relations derived from (23) (solid line) and the values of R, obtained from 
direct measurements of 2 and h (dashed line). The difference between the two curves 
must be attributed primarily to the lack of isotropy and secondly to experimental 

-- 
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errors. Finally, figure 3 ( c )  shows that S decreases with downstream distance, following 
a similar decrease in R,. The correction due to systematic experimental errors in the 
measurement of S, as shown in the same figure, was at most of the order of 10 %. 

The new experimental pairs of values of S and R, cover the range of R, between 5 
and 1 in figure 1.  The downward trend of S with decreasing R, is clear. The experimen- 
tal scatter does not permit accurate determination of a relation between S and B,, but 
it appears that a power law S cc R: can be fitted very roughly to the data over the 
limited range 1 < R, < 2. 

This work was supported by the National Science Foundation, Atmospheric Sciences 
Program. We should like to thank Jin Jso for his help in remeasuring a doubtful jet 
data point of Kuo & Corrsin (1971). 
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